CHEM1001 Problem Sheet 2 (Week 2)

Work through the ChemCAL module "Atomic and Nuclear Structure". Work through the iChem module "Atomic Symbol"

1. Complete the entries in the following table.

element	symbol	mass number	atomic number	number of electrons	number of neutrons	^m _z X
helium			2			
	С			6		¹² ₆ C
magnesium			12		12	
fluorine				9		

- 2. Calculate the frequency of red light of wavelength $\lambda = 700$ nm. $(1 \text{ nm} = 1 \times 10^{-9} \text{ m})$.
- 3. Microwaves are part of the electromagnetic spectrum and have frequencies between $v = 3 \times 10^9$ Hz and 3×10^{12} Hz. What are the corresponding wavelengths?
- 4. Ionising radiation has energy $\geq 1.93 \times 10^{-18}$ J per photon. Using this criterion, determine whether the following are ionising.
 - (a) UV light of $v = 1.00 \times 10^{16} \text{ Hz}$
 - (b) IR light of $v = 3 \times 10^{13} \text{ Hz}$
- 5. An atom of a given element has 17 protons in its nucleus. Draw an electron orbit diagram which shows the distribution of its electrons between the n = 1, n = 2 and n = 3 electron shells in the ground state.
- 6. Define each of the following and give an example of each to illustrate your answer.
 - (a) allotropes
 - (b) isotopes
- 7. As the atomic number increases, the neutron:proton ratio increases. What does this suggest is a factor in nuclear stability?
- 8. Three kinds of radiation make up nearly all of the radiation observed from naturally occurring radionuclides. What are they?